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The problem of the steady flow of a gas condensate mixture in a porous medium near a well is considered. Capillary forces and 
cross terms are taken into account in the flow law. It is shown that the problem splits into the purely physicochemical problem 
of capillary condensation and the problem of determining of the pressure field in the phases. The latter problem can have infinitely 
many solutions; the solution which is of the greatest interest in practice is separated out. An approximate solution in analytical 
form is found in the case of a small ratio of the gas and condensate viscosities. © 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

When modelling flows in porous media in the case of mixtures of the gas-liquid or liquid-liquid type 
when gravitational forces are unimportant, the generalized Darcy law for the average mass velocities 
of the phases [1] 

a -1 
u n = -k~n  fnbaPn, rt = 1, 2 (1.1) 

is usually employed, where u,~ are the flow rates of the phases, k is the absolute permeability, gn are 
the shear viscosities of the phases, pn is the pressure in the phases and f~ are functions of the phase 
permeabilities, which depend on the saturation of one of the phases. 

At the same time, modelling of the flow of a two-phase mixture in a capillary yields a result which 
differs from (1.1). For instance, when describing the flow of a multicomponent gas condensate mixture 
in an axially symmetric capillary using the density functional method [2] in the case when the condensate 
is a wetting phase, the following expressions for the average local velocities of the gas and the condensate 
are obtained 

, _ I v  dpg - 2  -1~ dPc 
ug = - R2(~tgl]~l + ~c ""2J"~"  X - R gc 2"3 dx (1.2) 

1~2, _Iv  dpg ~2 -1--  dPc 
Uc = - - ' "  I~c " 3 " ~ "  X --/~ gc 2"4 dx (1.3) 

where x is the coordinate along the axis of the capillary, R is the local value of the radius of the capillary, 
pg and Pc are the pressures in the gas and in the condensate, gg and gc are the shear viscosities of the 
gas and the condensate, and ~21, ~22, ~23 and ~ 4  a r e  dimensionless coefficients which depend on the local 
saturation of the condensate. 

Relations (1.2) and (1.3) differ from expressions (1.1) in that there are cross terms: the flow of one 
phase depends on the pressure gradient in the other phase. This had been noted a long time ago and 
served as the basis for assumptions regarding the extension of flow law (1.1). Thus, for example, 
expression for the flow rates of the phases were proposed in the form [3] 

?PriM. Mat. Mekh. Vol. 69, No. 2, pp. 235-244, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
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a _kg;~ U n = (fnlOaPl + fn2~aP2), n = 1, 2 

wherefnm are functions of the phase permeabilities. The inadequacy of these last expression lies in the 
fact that the dependence on the viscosities of the phases does not correspond to the exact relations 
(1.2) and (1.3). 

Steady flows of a gas condensate mixture near a well when the condensate is a wetting phase, which 
corresponds to the formulation of the problem described earlier in [2], will be considered below. The 
expressions with cross terms 

Ug = -k((p.-gl f l + gcl f2)OaPg + gc~ f3OaPc) (1.4) 

a -1 
u c = -kpc  (f3~aPg + f4OaPc) (1.5) 

are adopted for the flow rates of the phases, where fA = fA(Sc) (14 = 1, 2, 3, 4) are the relative phase 
permeability coefficients, which depend on the saturation of the condensate so. 

The dependence on the viscosity in expressions (1.4) and (1.5) corresponds to expressions (1.2) and 
(1.3). Moreover, the coefficients of the cross terms in (1.4) and (1.5) are taken to be equal, which also 
corresponds to expressions (1.2) and (1.3) and to the well-known Onsager symmetry relations in non- 
equilibrium thermodynamics [3]. 

In order to satisfy all the requirements of non-equilibrium thermodynamics [4], the matrix of the 
coefficients in the flow law (1.4), (1.5) 

A = g g l f l  + g ~ l f 2  

-1 
gc f3  

-if gc 3 

g c l f 4  
(1.6) 

must have non-negative eigenvalues. This property of the matrix (1.6) must not be associated with the 
actual values of the viscosities of the phases. We therefore adopt that following conditions which are 
imposed on the relative permeability coefficients and are sufficient for the non-negativity of the matrix 
(1.6) 

fA(Sc) > 0 (1.7) 

A(sc) = f2(sc) f4(Sc)  - f3(Sc) 2 >- 0 (1.8) 

Furthermore, we shall assume that the inequality 

f l  (Sc) + f4(sc)  > 0 (1.9) 

is satisfied, which means that at least one of the phases is mobile for any saturation value. 
We shall also adopt the usual conditions for the relative phase permeability coefficients for limiting 

values of the saturation 

f l (0)  = f4(1) = 1 (1.10) 

f l ( 1 )  = f 4 ( 0 )  = f 2 ( 0 )  = f 2 ( 1 )  = f 3 ( 0 )  = f 3 ( 1 )  = 0 (1.11) 

It is well-known that relations (1.7)-(1.11) are also satisfied in problems with flow law (1.1). It should 
be noted that flow law (1.4), (1.5), which is used in this paper, is not the most general one. For instance, 
defining relations for the flows of multiphase, multicomponent fluids in the porous media, taking account 
of diffusion and heat conduction within the framework of interpenetrating continua, have been obtained 
by means of non-equilibrium thermodynamics.t 

tKOLESNICHENKO, A. V. and MAKSIMOV, V. M., Thermodynamics of a multiphase, chemically active mixture. Darcy 
laws and diffusion, Preprint No. 52, The M. V. Keldysh Inst. Appl. Mat., Moscow, 1997; KOLESNICHENKO, A. V. and 
MASSIMOV, V. M. The generalized Darcy law as a consequence of the Stefan-Maxwell relations for a heterogeneous medium. 
Preprint No. 45, The M. V. Keldysh Inst. Appl. Math., Moscow, 1999. 
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A qualitative analysis of the solutions of the problem of the steady flow of a gas condensate mixture 
near a well in the case of flow law (1.4), (1.5) is given in Section 2. The case when the problem has a 
solution in analytical form is investigated in Section 3. The methods used in this paper correspond to 
the approach described earlier in [5-7] for investigating flows of a gas condensate mixture in the case 
of law (1.1). 

2. T H E  G E N E R A L  P R O P E R T I E S  OF T H E  S O L U T I O N S  

We will now consider an axisymmetric, isothermal, steady flow of a gas condensate mixture in a porous 
medium near an operational well. The system of equations for the conservation of the components 

t~r(r(nigUg + nicu;) ) = 0 (2.1) 

is satisfied, where r is the distance from the axis of the well, u~ and Uc r are the flow rates of the gas and 
the condensates, and nig and nic are the molar densities of the components of the gas and the condensate 
respectively. Henceforth, the subscript i takes the values 1, ... ,  M, corresponding to the number of the 
component. 

Equations (2.1) have the M integrals 

21~rh(nigurg + nicU;) ) = -Qi  (2.2) 

where h is the thickness of the stratum and Qi is the overall flow of the component of the gas condensate 
mixture with number i. 

We shall assume that all the properties and characteristics of the gas and the condensate are defined 
by expressions which are common to the two phases [8]. Thus,pg = p(nig) andpc = p(ni~) are the pressures 
in the gas and in the condensate, gs = g(nig) and g~ = g(nic) are the shear viscosities of the gas and the 
condensate and ~:ig = ~ci(njg) and r:ic = ~:i(njc) are the chemical potentials of the components of the gas 
and the components of the condensate. 

The densities of the components of the gas and the components of the condensate are related by 
the conditions of local thermodynamic equilibrium 

Rig = ~ic (2.3) 

P s - P c  = Peg (2.4) 

Here,Pcap = pcap(Sc) > 0 is the capillary pressure jump. It is assumed thatpcao = Pca-(S~) > 0 is a smooth, 
monotonic, decreasing function of the saturation of the condensate Sc, Pcap(1) = ~. 

We will now introduce the following notation: Q = ~,iQi is the overall flow of all of the components 
of the mixture, ng = ~inig, n~ = ~inic are the overall molar densities of the gas and the condensate 
respectively, and Cig = nig/ng and tic = nic/nc are the concentrations of the components of the gas and 
the condensate respectively. 

The relation 

( 1 -  W)cig + Wcic = Cio (2.5) 

F r 
W = -2rcrhncuc/Q = 1 + 2rcrhngug/Q (2.6) 

which relates the concentrations in the phases, follows from Eqs (2.2). 
The system of equations (2.3), (2.5) can be interpreted as a description of the decomposition of a 

mixture with composition Cio into gas and condensate with compositions % and % and pressures in the 
phasespg andpc respectively. Here, Wis the mole fraction of the condensate in the mixture. The problem 
of the decomposition of a mixture Cio into a gas and a condensate is independent of the problem of the 
fluid flow in a porous medium and can be solved by the methods of chemical thermodynamics of the 
basis of a chosen equation of state for the mixture, for example [8]. For a fixed choice of Cio, the solution, 
generally speaking, has the following functional form 

Cig -~ ¢ig(Pg' Pc), ng = ng(pg, Pc), Cic = Cic(Pg, Pc) 

nc = nc(pg, Pc), W = W(pg,  Pc) (2.7) 
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Pc 

13 

Po Pg 

Fig. 1 

The expressions for the partial derivatives aW/apg and aW/apc are presented in the appendix (Section 
4) It is important that, when the function W = W(p  ,Pc) vanishes for a certain pair of values pg, Pc and 

• , , g ,  , . • 

there is no concentrate, (aW/apc) < 0 (see lnequahty (4.8)). Consequently, if the magnitude Ofpg is 
reduced for a given value of pc, condensate appears in the system. 

We recall that, in the case of gas-concentrate deposits, the situation is typical when there is either 
no concentrate in the stratum a long way from the well or the quantity of condensate is insignificant 
and its mobility can be neglected. Hence the concentrations Cio describe the gaseous phase of the mixture 
in the stratum. Close to the well, when the pressurepg is reduced, the gaseous mixture becomes thermo- 
dynamically unstable and mobile condensate appears (the phenomenon of retrograde condensation). 
Taking account of the earlier remark concerning the nature of the dependence of the function W on 
Pc, it is possible to represent the position of the curve W = 0 qualitatively in the pg, Pc plane (Fig. 1). 
Point D in Fig. 1 corresponds to the value of the pressure PD at which the gaseous mixture becomes 
saturated (the dew point). 

Instead of the spatial coordinate r, it is convenient to introduce the variable 

= Q(2rtkh)- l ln(r/a)  (2.8) 

The system of ordinary differential equations for the pressures in the phases then follows from Eqs 
(1.4), (1.5) and (2.6) 

d p g  _ (1 - W ) f 4 n g  1 - W f 3 n c  1 

d~ gg l f l f4  + -1 gc A 
(2.9) 

-1 
dp.___£ = - (1 - W) f 3n-g 1 + W([,lcl.tg f l + f2)nc 1 

d~ gg l f l f4  + ~clA 
(2.10) 

Equation (2.4), by virtue of the monotonicity of its right-hand side can be considered as an implicit 
definition of the saturation of the condensate in the form of a function of the difference of the pressures 
in the phases sc = Sc(Pg -Pc).  After substituting this function into the system of equations (2.9), (2.10), 
a closed problem for determining the pressure pg = pg({), Pc = Pc({) is obtained• 

By virtue of the autonomy of the system of equations (2.9), (2.10), the single solution of the problem 
Pg = Pg(~), Pc = Pc(~) generates the set of other solutions pg = pg({ + ~o), Pc = Pc({ + ~o), where the 
magnitude of ~0 is arbitrary. Recalling the definition of the variable ~ (2.8), it can be concluded that 
the single solution which has been found enables one automatically to obtain the solution of the initial 
problem (2.1), (2•3), (2.4) for any other values of the parameters Q, k, h and a. 
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The solution of the problem of the flow of a gas condensate mixture in a porous medium must satisfy 
the usual boundary conditions, that is, the pressure on the end face of the wellpw and the pressure in 
the stratump0 are specified 

Pglr=r. = Pw, Pglr=ro = PO (2.11) 

where r w is the radius of the well and r 0 is the radius of the feeding contour. The well production rate 
Q is determined from the solution of the problem, taking account of conditions (2.11). 

It should be noted that the solution of the problem of the flow of a gas condensate mixture in a porous 
medium is not, generally speaking, uniquely defined by the boundary conditions (2.11). In fact, in the 
general case, the trajectories of system (2.9), (2.10) continuously fill thepg, pc plane and, consequently, 
they form a one-parameter family. By choosing any trajectory, the values of the parameter {, 
corresponding to the radii rw and r0, can be determined from conditions (2.11), and the parameters Q 
and a can then be calculated from Eq. (2.8). It is therefore possible to obtain an infinite number of 
solutions of the seepage problem of the fluid flow in a porous medium and it is necessary to have an 
additional criterion for selecting a unique solution. 

We will not consider the problem of the non-uniqueness of the solution in greater detail. According 
to relation (2.6), the condensate is mobile only if W > 0. Consequently, if there is a non-zero threshold 
for the mobility of the condensate s~l > 0, then, when W > 0, the saturation of the condensate must be 
higher than this threshold sc > Scl. When W = 0, the condensate is immobile (if it exists). Consequently, 
f2 = f3 = f4 = 0 and Eq. (2.9) reduces to the form 

d p g _  gg 
dE f lng (2.12) 

In this case, there is an indeterminacy of the 0/0 type on the right-hand side of Eqs (2.9) and (2.10). 
In the case of Eq. (2.9), this indeterminacy is removable and division of the numerator and denominator 
on the right-hand side by f4 enables one to prove the continuity at the point where a transition occurs 
from single-phase flow to two-phase flow. In Eq. (2.10), the 0/0 indeterminacy is not removable. In fact, 
the non-uniqueness of the solution is associated with this: system (2.9), (2.10) does not satisfy the 
Picard-Lindel6f existence and uniqueness theorem for ordinary differential equations [9]. 

From a physical point of view, two mechanisms for the occurrence of the non-uniqueness can be 
recognized. 

1. Suppose sc = Sc(Pg) is the saturation value as a function of the pressure in the gas phase, which 
is obtained by eliminating the parameterpc from the equations W(pg, Pc) = 0 and (2.4). In other words, 
this is the limit value of the saturation of the condensate such that a mixture with a composition Cio 
cannot decompose in the porous medium into a gas phase with a pressure pg and a liquid phase with 
saturation in the interval [Sc(Pg), 1]. Then, the inequality Sc(Pg) < Scl can be satisfied for certain values 
of the pressure in the gas phase, which are higher than the saturation pressurepg > Pp. In this case, a 
mobile gas phase with a composition Cio can coexist in thermodynamic equilibrium with an immobile 
liquid phase, during which the saturation of the liquid phase lies in the interval [Sc(pg), Scl]. In spite of 
the fact that the liquid phase is immobile, it has an effect on the pressure field, since the coefficient 
f l  = fl(Sc) exists on the right-hand side of Eq. (2.12). 

The absence or presence of an immobile liquid phase does not contradict the basic equations of 
problem (2.1), (2.3), (2.4), and, hence, solutions with an arbitrary set of intervals of the radial coordinate 
r, in which an immobile liquid phase is present, are permissible in principle. However, if a flow near a 
well, which has been formed as a result of a gradual reduction in the pressure on the end face of the 
well, is considered, and there was initially no condensate in the stratum, then solutions with an immobile 
liquid must be excluded. On the other hand, if an immobile condensate exists from the outset in the 
stratum, it must also remain during the steady flow. 

2. A jump in the saturation occurs at the point ~ = ~t where a transition occurs from the domain 
W = 0 to the domain W > 0. As has been discussed above, when ~ > {t, the saturation of the condensate 
is equal to zero or lies in the range [Sc(Pg), sd]. When { < {t, the saturation of the condensate is strictly 
higher than the value Scl and, simultaneously, strictly lower than the value s~2, corresponding to the 
threshold of mobility for the gas. A value Sct = Sc [~ = ~, _ 0 can be arbitrarily chosen in the range 
Scl <Sct < Sc2 and this choice uniquely defines the solution in the region { < {t- 

As in case 1, if the steady flow is the result of a monotonic evolution of a stratum system in which 
there was initially no condensate, it is necessary to choose the solution with the minimum value of the 
saturation of the condensate. The corresponds to the boundary condition 
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sc t=  sol (2.13) 

So, the choice of the solutions must be based on the prehistory of the stratum system as a whole. We 
shall consider the solution with the smallest possible amount of condensate below. In the domain 
W = 0, there is no condensate and the pressure field is determined by Eq. (2.12) with fl = 1. In the 
domain W > 0, the solution of the problem is determined by system (2.9), (2.10) with boundary condition 
(2.13). 

We recall that a small value of the ratio of the viscosities (gg/gc) ~ 10-3 - 10-2 is a characteristic feature 
of gas condensate flows, and the asymptotic behaviour of the solutions in the limit of small (gg/g¢) ratios 
is therefore of interest. We put gg = egoS, where e is a small dimensionless quantity and ~ is a finite 
dimensionless function. The system of equations (2.9), (2.10) becomes 

dpg egc(~! 1 - W)f4n-g 1 - Wf3nc  1 
(2.14) 

dPc - (1 - W)ei~f3n-g 1 + W ( f  I + et~f2)nc 1 

d~ = gc  f l f  4 + 13¢~A 
(2.15) 

If the quantityfl in these equations remains finite and positive when ~ ~ 0, then the equations 

dpg = O, dPc W 
d~ ~ = gCncf 4 

are obtained in the leading approximation. 
Consequently, as ~ becomes smaller, the pressure in the condensate falls monotonically which, by 

virtue of condition (2.4), implies that there is a monotonic decrease in the saturation and mobility of 
the condensate. However, it has been pointed out above that the condensate is necessarily mobile in 
the domain W > 0. This contradiction means that, in fact, the magnitude of fl tends to zero when 
e ~ 0, that is, the saturation s¢ is identical with the magnitude of Sc2, which corresponds to the mobility 
threshold for the gas. At the same time, in accordance with (2.4), the magnitude of the capillary jump 
converges to a certain constant ~cap, which is independent of the variable {. 

The principal asymptotic form for fl 

f l  = I~t~(( W- l -  1)f4*ncn-g I + f3*( -  1 + (W -1- 1)ncn-g 1) - f 2 * )  

f2* = f2(Sc2) , f3* = f3(Sc2) , f4* = f4(Sc2) 
(2.16) 

can be calculated from Eqs (2.14) and (2.15) and the condition 

d ( p g - p c ) l d  ~ = 0 (~)  

Substituting expression (2.16) into the right-hand side of Eq. (2.14), we obtain an approximate equation 
for the pressure in the gas phase. 

dpg = F; F -  IX~W 
d~ nc( f3* + f4*) + O(e) (2,17) 

An expression for the function F with a higher order of accuracy can be found using the continuity 
of the right-hand side of Eq. (2.9) at the point where the transition from single-phase flow to two-phase 
flow occurs. Actually, since W = 0 when ~ = ~t, we obtain the expression 

gcW + ~ + O(e 2) (2.18) 
F = n c ( f 3 ,  + f4*) ng 

Generally speaking, the quantities on the right-hand side of Eq. (2.17) are functions of the pressures 
in the gaseous and liquid phases. However, by virtue of the relationpc = pg - Ap, F can be considered 
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as being a function of a single argumentpg, and it is therefore possible to find the solution when ~ < it  
in the implicit form 

Pe 

[ dpg (2.19) ~t -  ~ = ,t V(pg) 
Pg 

where Pt is the pressure at the point It. The solution (2.19) must be joined with the solution when 
= ~t, which is determined from Eq. (2.12). 
The sum of the direct and cross coefficients of relative permeability appears in the final equation for 

the pressure in the gas (2.17). It can be seen that the effect of the cross coefficient leads to a reduction 
in the pressure gradient (that is, to a reduction in the pressure drawdown) for a specified production 
rate of the well. 

3. T H E  S O L U T I O N  IN A N A L Y T I C A L  F O R M  

We will now consider the flow of a gas condensate mixture, described by Eq. (2.12) in the single-phase 
domain and by Eq. (2.17) in the two-phase domain. In Eq. (2.12), the coefficient fl  is assumed to be 
equal to unity. A solution in an analytical form can be obtained only if it is possible to represent the 
right-hand sides of Eqs (2.12) and (2.17) in the form of fairly simple expressions. 

In Eq. (2.12), we will assume that the viscosity of the gas gg is constant and we will take the equation 
of state in the form 

pg = Z R T n g  

where Z is a constant, dimensionless coefficient which is called the coefficient of hypercompressibility, 
R is the universal gas constant and T is the temperature in the stratum. It is then easy to integrate 
Eq. (2.12). 

z 2 2ggZRT({ {t) (3.1) Pg - Pt = 

In Eq. (2.17) we assume that the viscosity of the condensate gc and the density of the condensate nc 
are constants. It has been noted in [5] that, when there are no capillary forces, the function of the mole 
fraction of the condensate W is well-described by the expression 

W = a l p + a z / ( p - a 3 )  (3.2) 

Here, al, a2, a3 are positive constants which are determined with respect to two points, the dew point 
and the point where the function W is a maximum [6]. In other words, these constants must be found 
from the system of equations 

d W 
W(pD) = O, W(pm) = W m, -~-p(p,,) = 0 (3.3) 

wherepm is the pressure at which the function Wreaches its maximum value Wm. The system of equations 
(3.3) has two sets of solutions whenpm/pD > 0.75. The best approximation of the experimental contact 
condensation curves is attained for the set of coefficients with the smaller value of a3. 

It is necessary to modify expression (3.2) when account is taken of capillary forces. The simplest 
generalization of the expression for the mole fraction of the condensate can be obtained by adding a 
term which is linear in the pressure in the liquid phase 

W = alPg + a2/(Pg - a3) + a4(Pg - Pc) (3.4) 

to the right-hand side of (3.2). Here, a 4 is a positive coefficient which must be selected from the 
experimental data on capillary condensation. It is clear that expression (3.4) satisfies inequality (4.8) 
(see Section 4 below). In the case of a fixed capillary jump pg -Pc  = 8cap, the function W vanishes at 
two points: p ,  andpt  and the inequalit iesp, < PD < Pt are satisfied. Therefore, the formula 

W = a l ( P g - p , ) ( p g - P t ) / ( p g - a 3 )  

holds. 
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Apa r t  f rom terms 0(82), Eq. (2.17) there fore  reduces  to the fo rm 

dpg _ a i g c ( P g -  b l ) (Pg - b2) 

d~ n c ( f 3 ,  + f 4 , ) ( P g  - a3) 

b I = p , + b o ( p , - a 3 ) ,  b2 = P t - b o ( P t - a 3 )  

g g Z R T n c ( f  3 ,  + f 4 , )  

b o = algcPt (Pt_  p , )  

In  accordance with formula  (2.18), the implicit solution of  the p r o b l e m  in two-phase domain  

b l - a 3 .  P t - b l  b l - a 3 1 n b z - p t  
t,2-pg 

_ { )  (3 .5 )  

n c ( f 3 ,  + f4*) 

is ob ta ined  f rom this. 
Relat ions (3.5) shows that  the cross coefficient of  the relative phase  permeabi l i ty  f3 is p resen t  in the 

solution in a sum with the coefficient f4 and leads to an increase in the mobil i ty of  the condensate .  The  
coefficient f2 drops  out  f rom the final solution. 

4. A P P E N D I X  

A derivative of the differential relations which the functions (2.7) satisfy is presented below. Summation is carried 
out over repeated subscripts corresponding to the numbers of the components. It is convenient to use the 
thermodynamic potential (the Gibbs energy) of the mixture ~ = ~(p, ci) = c?:i. Since the concentrations satisfy 
the normalization condition cl + c2 + ... + cM = 1, the function ~ actually depends on the concentrations 
cl . . . . .  cM_ 1. We shall use the Greek subscripts a, 13 = 1 . . . . .  (M - 1), which correspond to this shortened set of 
concentrations. We also introduce the following notation for the partial derivatives: ~ = ~W~Ca, Up = ~W~p. 

We recall the well-known relations which the thermodynamic potential satisfies [5] 

~/,a = ~¢a-~CM, ~,p = n (4.1) 

Taking account of relations (4.1), we can rewrite the phase equilibrium condition (2.3) in the form 

Ilt,ag = ~.ac (4.2) 

y g  - C a g ¥ , a g  = 1111 c -- C a c ¥ , a c  (4.3) 

Differentiation of the 2M-1 independent equalities (2.5), (4.2), and (4.3) leads to 2M-1 linear equations relating 
the 2M + 1 differentials of the concentrations dccLg, dcc, c, of the pressures dpg, dpc and the mole fraction of the 
condensate dW. From these equations, the differentials dcc, g, dcc, c and dWcan be expressed as linear functions of 
the differentials dpg, dpc. 

In order to write these expressions in a compact form, it is convenient to change to an abbreviated matrix 
description in the case of quantities which depend on the Greek subscripts. Thus, for the vectors rl = 01c,), 
q '  = (vll) we define a scalar product using the formula (1"1, q') = rl~rl~ and, in addition, introduce the notation 

% = ( % g ) ,  c ~ = ( % c )  

Ag = (Aa~g) = (~,a~g), Bg = (Bag) = (n-g2nag) 

Ac = (Aa~c) = (V,af~c), Bc = (Bac) = (nc2n,ac) 

bg = n-g I+(Bg,cg), b c = nc I+(B c,cc) 

Fg = WAg, F c = ( 1 - W ) A  c 

Note that the two phases, gas and condensate, are assumed to be locally thermodynamically stable, and the 
matrices Ag and Ac are therefore positive. 
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Differentiating relations (2.5), (4.2) and (4.3), we obtain the equations 

Wdc c + (1 - W)dCg + (c c - cg )dW = 0 

AgdCg-  Bgdpg = Acdc C-  BcdPc (4.4) 

(cg, Agdcg) - bgdpg = (c c, Acdcc) - bcdPc 

Eliminating the differentials of the concentrations from these equations, we obtain an expression for the differen- 
tial of the mole fraction of the condensate 

d W  = ¢Ool(toJpg - ¢OcdPc ) (4.5) 

( c ~  - c~, ( r ~ -  r~(r~ + r~)-~ r~)(c~ - Cc)) 
too = W(1 - W) 

tOg = bg - (FgCg + F~c c, (Fg + Fc)-lBg) 

tOc = bc - (FgCg + FcC c, (Fg + Fc)-lBc) 

Expressions for the differentials of the concentrations 

dcg = (Fg + Fc)-l ( (WBg + O}oltOgAc(Cc - cg))dpg - 

- (WB~ + tooltocAc(cc - cs))dp~ ) (4.6) 

dc c = (l"g + Fc) - I ( ( (W-  1)Bg + toolt.ogAg(cc - Cg))dpg - 

- ( ( W  - 1 )B c + 0301 tOcAg(C c - Cg))dPc) (4.7) 

are obtained in a similar manner. 
Relations (4.5)-(4.7) can be used in numerical algorithms to determine the functions cig = Cig(Pg, Pc), 

Cic = Cic(Pg, Pc), W = W(pg, Pc) by the method of small increments in the pressures in the phases. 
The behaviour of the differential d W  at points where W = 0 is of special interest. For this case, the expression 

O__.W = _ncl((Cc _ Cg), Ag(c c - cg)) -I < 0 (4.8) 
bPc 

is obtained from formula (4.5). 
By virtue of the continuity, inequality (4.8) still holds in a certain neighbourhood of the curve W = 0. Hence, 

in the case of a small mole fraction of condensate, a drop in the pressure in the condensate gives rise to an increase 
in the amount of concentrate (capillary condensation). 

This research  was suppo r t ed  by the  in te rna t iona l  oil and  gas company  Sch lumberger  Oilf ield Services. 
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